Enhanced thermoelectric properties in hybrid graphene/boron nitride nanoribbons
نویسندگان
چکیده
منابع مشابه
Engineering enhanced thermoelectric properties in zigzag graphene nanoribbons
We theoretically investigate the thermoelectric properties of zigzag graphene nanoribbons in the presence of extended line defects, substrate impurities, and edge roughness along the nanoribbon’s length. A nearest-neighbor tight-binding model for the electronic structure and a fourth nearest-neighbor force constant model for the phonon bandstructure are used. For transport, we employ quantum me...
متن کاملEnhanced Thermoelectric Efficiency of Porous Silicene Nanoribbons
There is a critical need to attain new sustainable materials for direct upgrade of waste heat to electrical energy via the thermoelectric effect. Here we demonstrate that the thermoelectric performance of silicene nanoribbons can be improved dramatically by introducing nanopores and tuning the Fermi energy. We predict that values of electronic thermoelectric figure of merit ZTe up to 160 are ac...
متن کاملThermoelectric Properties of Doped Zigzag Silicene Nanoribbons
Thermoelectric properties of silicene nanoribbons doped with magnetic impurity atoms are investigated theoretically for both antiparallel and parallel orientations of the edge magnetic moments. Spin density distribution and transport parameters have been determined by ab-initio numerical methods based on the density functional theory. Doping with magnetic atoms considerably modi es the spin den...
متن کاملThermoelectric properties of graphene nanoribbons, junctions and superlattices.
Using model interaction Hamiltonians for both electrons and phonons and Green's function formalism for ballistic transport, we have studied the thermal conductance and the thermoelectric properties of graphene nanoribbons (GNR), GNR junctions and periodic superlattices. Among our findings we have established the role that interfaces play in determining the thermoelectric response of GNR systems...
متن کاملMagnetic boron nitride nanoribbons with tunable electronic properties.
We present theoretical evidence, based on total-energy first-principles calculations, of the existence of spin-polarized states well localized at and extended along the edges of bare zigzag boron nitride nanoribbons. Our calculations predict that all the magnetic configurations studied in this work are thermally accessible at room temperature and present an energy gap. In particular, we show th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2012
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.86.045425